EGC220 Class Notes 2/7/2023

Baback Izadi
Division of Engineering Programs
bai@engr.newpaltz.edu

10110
a.unsigned. 168421
b, signed.
I. sishod Mg ,

$$
10110 \rightarrow-6_{8}
$$

IT. risnod ars comp. $10110 \frac{25}{-10}-01010$

How many bits

1. Perform the following operations in binary, Assumes signed 2 's complement $643216 \quad 8421$
notation.

TABLE 2-5

$$
\text { AN M OR } y=4 \times 2+5
$$

Truth Table for the Function $L=D \overline{\bar{X}}$

TABLE 1-5
American Standard Code for Information Interchange (ASCII)

$\mathrm{B}_{4} \mathrm{~B}_{3} \mathrm{~B}_{2} \mathrm{~B}_{1}$	$\mathrm{B}_{7} \mathrm{~B}_{6} \mathrm{~B}_{5}$							
	000	001	010	011	100	101	110	111
0000	NULL	DLE	SP	0	@	P	,	p
0001	SOH	DC1	!	1	A	Q	a	q
0010	STX	DC2	"	2	B	R	b	r
0011	ETX	DC3	\#	3	C	S	c	s
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	\%	5	E	U	e	u
0110	ACK	SYN	\&	6	F	V	f	v
0111	BEL	ETB	'	7	G	W	g	w
1000	BS	CAN	(8	H	X	h	x
1001	HT	EM)	9	I	Y	i	y
1010	LF	SUB	*	:	J	Z	j	z
1011	VT	ESC	+	;	K	[k	\{
1100	FF	FS	,	<	L	1	1	I
1101	CR	GS	-	$=$	M]	m	,
1110	SO	RS	.	>	N	\wedge	n	~
1111	SI	US	1	?	O	-	o	DEL

. Decide the following ASCII code
100001011010011101100110110010001111100001111010011001011110011 BillGates

$$
\begin{aligned}
& \text { 3. Convert } 1341 \text { to } \mathrm{BCD} \text { code } \quad 8421
\end{aligned}
$$

$$
\begin{aligned}
& 134 \\
& \text { 4. By means of truth table and waveform determine the outputs of the circuit } \\
& \text { b. } \\
& \stackrel{(}{5}=D-*=A+B+C H
\end{aligned}
$$

 c Po $\longrightarrow \longrightarrow \square$ B oper L
A Ahs.

$\overline{A B C}$
5. Write the Boolean expression of the following circuit:
6. For the circuit in Problem 5, by using a truth table, show that it is equivalent to a 4 input AND gate.

7. Draw the logic circuit realization of the following Boolean expression as stated. Do not simplify!

$$
Y=f(A, B, C)=\overline{(A+B)}(\bar{B}+C)
$$

